skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1826869

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2026
  2. Free, publicly-accessible full text available September 1, 2026
  3. Bound states of charm and anticharm quarks, known as charmonia, have a rich spectroscopic structure that can be used to probe the dynamics of hadron production in high-energy hadron collisions. Here, the cross section ratio of excited ( ψ ( 2 S ) ) and ground state ( J / ψ ) vector mesons is measured as a function of the charged-particle multiplicity in proton-lead ( p Pb ) collisions at a center-of-mass (CM) energy per nucleon pair of 8.16 TeV. The data corresponding to an integrated luminosity of 175 nb 1 were collected using the CMS detector. The ratio is measured separately for prompt and nonprompt charmonia in the transverse momentum range 6.5 < p T < 30 GeV and in four rapidity ranges spanning 2.865 < y CM < 1.935 . For the first time, a statistically significant multiplicity dependence of the prompt cross section ratio is observed in proton-nucleus collisions. There is no clear rapidity dependence in the ratio. The prompt measurements are compared with a theoretical model which includes interactions with nearby particles during the evolution of the system. These results provide additional constraints on hadronization models of heavy quarks in nuclear collisions. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  4. A<sc>bstract</sc> Measurements of light-by-light scattering (LbL,γγ → γγ) and the Breit-Wheeler process (BW,γγ →e+e) are reported in ultraperipheral PbPb collisions at a centre-of-mass energy per nucleon pair of 5.02 TeV. The data sample, corresponding to an integrated luminosity of 1.7 nb−1, was collected by the CMS experiment at the CERN LHC in 2018. Events with an exclusively producedγγore+epair with invariant massesmγγ,ee>5 GeV, along with other fiducial criteria, are selected. The measured BW fiducial production cross section,σfid(γγ → e+e) = 263.5±1.8(stat)±17.8(syst)μb, as well as the differential distributions for various kinematic observables, are in agreement with leading-order quantum electrodynamics predictions complemented with final-state photon radiation. The measured differential BW cross sections allow discrimination between different theoretical descriptions of the photon flux of the lead ion. In the LbL final state, 26 exclusive diphoton candidate events are observed compared with 12.0 ± 2.9 expected for the background. Combined with previous results, the observed significance of the LbL signal with respect to the background-only hypothesis is above five standard deviations. The measured fiducial LbL scattering cross section,σfid(γγ→γγ) = 107 ± 24(stat) ± 13(syst) nb, is in agreement with next- to-leading-order predictions. Limits on the production of axion-like particles coupled to photons are set over the mass range 5–100 GeV, including the most stringent limits to date in the range of 5–10 GeV. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  5. The first search for a heavy neutral spin-1 gauge boson ( Z ) with nonuniversal fermion couplings produced via vector boson fusion processes and decaying to tau leptons or W bosons is presented. The analysis is performed using LHC data at s = 13 TeV , collected from 2016 to 2018 with the CMS experiment and corresponding to an integrated luminosity of 138 fb 1 . The data are consistent with the standard model predictions. Upper limits are set on the product of the cross section for production of the Z boson and its branching fraction to τ τ or W W . The presence of a Z boson decaying to τ + τ ( W + W ) is excluded for masses up to 2.45(1.60) TeV, depending on the Z boson coupling to standard model weak bosons, and assuming a Z τ + τ ( W + W ) branching fraction of 50%. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  6. Charged hadron elliptic anisotropies ( v 2 ) are presented over a wide transverse momentum ( p T ) range for proton-lead ( p Pb ) and lead-lead (PbPb) collisions at nucleon-nucleon center-of-mass energies of 8.16 and 5.02 TeV, respectively. The data were recorded by the CMS experiment and correspond to integrated luminosities of 186 and 0.607 nb 1 for the p Pb and PbPb systems, respectively. A four-particle cumulant analysis is performed using subevents separated in pseudorapidity to effectively suppress noncollective effects. At high p T ( p T > 8 GeV ), significant positive v 2 values that are similar between p Pb and PbPb collisions at comparable charged particle multiplicities are observed. This observation suggests a common origin for the multiparticle collectivity for high- p T particles in the two systems. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  7. A measurement is presented of the cross section in proton-proton collisions for the production of two W bosons and one Z boson. It is based on data recorded by the CMS experiment at the CERN LHC at center-of-mass energies s = 13 and 13.6 TeV, corresponding to an integrated luminosity of 200 fb 1 . Events with four charged leptons (electrons or muons) in the final state are selected. Both nonresonant W W Z production and Z H production, with the Higgs boson decaying into two W bosons, are reported. For the first time, the two processes are measured separately in a simultaneous fit. Combining the two modes, signal strengths relative to the standard model (SM) predictions of 0.75 0.29 + 0.34 and 1.74 0.60 + 0.71 are measured for s = 13 and 13.6 TeV, respectively. The observed (expected) significance for the triboson signal is 3.8 (2.5) standard deviations for s = 13.6 TeV , thus providing the first evidence for triboson production at this center-of-mass energy. Combining the two modes and the two center-of-mass energies, the inclusive signal strength relative to the SM prediction is measured to be 1.03 0.28 + 0.31 , with an observed (expected) significance of 4.5 (5.0) standard deviations. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  8. A<sc>bstract</sc> A search for the production of a single top quark in association with invisible particles is performed using proton-proton collision data collected with the CMS detector at the LHC at$$\sqrt{s}=13$$TeV, corresponding to an integrated luminosity of 138 fb−1. In this search, a flavor-changing neutral current produces a single top quark or antiquark and an invisible state nonresonantly. The invisible state consists of a hypothetical spin-1 particle acting as a new mediator and decaying to two spin-1/2 dark matter candidates. The analysis searches for events in which the top quark or antiquark decays hadronically. No significant excess of events compatible with that signature is observed. Exclusion limits at 95% confidence level are placed on the masses of the spin-1 mediator and the dark matter candidates, and are compared to constraints from the dark matter relic density measurements. In a vector (axial-vector) coupling scenario, masses of the spin-1 mediator are excluded up to 1.85 (1.85) TeV with an expectation of 2.0 (2.0) TeV, whereas masses of the dark matter candidates are excluded up to 0.75 (0.55) TeV with an expectation of 0.85 (0.65) TeV. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  9. A<sc>bstract</sc> The first measurement of the dijet transverse momentum balancexjin proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy of$$\sqrt{{s}_{\text{NN}}}$$= 8.16 TeV is presented. Thexjobservable, defined as the ratio of the subleading over leading jet transverse momentum in a dijet pair, is used to search for jet quenching effects. The data, corresponding to an integrated luminosity of 174.6 nb−1, were collected with the CMS detector in 2016. Thexjdistributions and their average values are studied as functions of the charged-particle multiplicity of the events and for various dijet rapidity selections. The latter enables probing hard scattering of partons carrying distinct nucleon momentum fractionsxin the proton- and lead-going directions. The former, aided by the high-multiplicity triggers, allows probing for potential jet quenching effects in high-multiplicity events (with up to 400 charged particles), for which collective phenomena consistent with quark-gluon plasma (QGP) droplet formation were previously observed. The ratios ofxjdistributions for high- to low-multiplicity events are used to quantify the possible medium effects. These ratios are consistent with simulations of the hard-scattering process that do not include QGP production. These measurements set an upper limit on medium-induced energy loss of the subleading jet of 1.26% of its transverse momentum at the 90% confidence level in high multiplicity pPb events. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  10. PRD (Ed.)
    A search for heavy neutral gauge bosons ( Z ) decaying into a pair of tau leptons is performed in proton-proton collisions at s = 13 TeV at the CERN LHC. The data were collected with the CMS detector and correspond to an integrated luminosity of 138 fb 1 . The observations are found to be in agreement with the expectation from standard model processes. Limits at 95% confidence level are set on the product of the Z production cross section and its branching fraction to tau lepton pairs for a range of Z boson masses. For a narrow resonance in the sequential standard model scenario, a Z boson with a mass below 3.5 TeV is excluded. This is the most stringent limit to date from this type of search. © 2025 CERN, for the CMS Collaboration2025CERN 
    more » « less
    Free, publicly-accessible full text available June 1, 2026